Two Statistics Linking Dyck Paths and Non-crossing Partitions
نویسندگان
چکیده
منابع مشابه
Two Statistics Linking Dyck Paths and Non-crossing Partitions
We introduce a pair of statistics, maj and sh, on Dyck paths and show that they are equidistributed. Then we prove that this maj is equivalent to the statistics ls and rb on non-crossing partitions. Based on non-crossing partitions, we give the most obvious q-analogue of the Narayana numbers and the Catalan numbers.
متن کاملCombinatorial Statistics on Non-crossing Partitions
Four statistics, ls, rb, rs, and lb, previously studied on all partitions of { 1, 2, ..., n }, are applied to non-crossing partitions. We consider single and joint distributions of these statistics and prove equidistribution results. We obtain qand p, q-analogues of Catalan and Narayana numbers which refine the rank symmetry and unimodality of the lattice of non-crossing partitions. Two unimoda...
متن کاملRestricted Dumont permutations, Dyck paths, and noncrossing partitions
We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that use...
متن کاملPairs of noncrossing free Dyck paths and noncrossing partitions
Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n and noncrossing partitions of [2n + 1] with n + 1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.
متن کاملStatistics of Blocks in k-Divisible Non-Crossing Partitions
We derive a formula for the expected number of blocks of a given size from a non-crossing partition chosen uniformly at random. Moreover, we refine this result subject to the restriction of having a number of blocks given. Furthermore, we generalize to k-divisible partitions. In particular, we find that in average the number of blocks of a k-divisible non-crossing partitions of nk elements is k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2011
ISSN: 1077-8926
DOI: 10.37236/570